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IMPROVING THE CONVERGENCE 
OF NON-INTERIOR POINT ALGORITHMS 

FOR NONLINEAR COMPLEMENTARITY PROBLEMS 

LIQUN QI AND DEFENG SUN 

ABSTRACT. Recently, based upon the Chen-Harker-Kanzow-Smale smoothing 
function and the trajectory and the neighbourhood techniques, Hotta and 
Yoshise proposed a noninterior point algorithm for solving the nonlinear com- 
plementarity problem. Their algorithm is globally convergent under a rela- 
tively mild condition. In this paper, we modify their algorithm and combine it 
with the superlinear convergence theory for nonlinear equations. We provide a 
globally linearly convergent result for a slightly updated version of the Hotta- 
Yoshise algorithm and show that a further modified Hotta-Yoshise algorithm 
is globally and superlinearly convergent, with a convergence Q-order 1 + t, 
under suitable conditions, where t E (0, 1) is an additional parameter. 

1. INTRODUCTION 

Consider the nonlinear complementarity problem (NCP): Find an (x, y) E Rn X 
Rn such that 

(1) y-f( y?O, xTy=O, 

where f: ERn - ERn is a continuously differentiable function. The NCP has received 
a lot of attention due to its various applications in operations research, economic 
equilibrium, and engineering design [18, 25, 16]. 

It is easy to see (e.g., see [18]) that finding a solution of (1) is equivalent to 
finding a root of the following equation: 

(2) H(x,y) :[ 2 
fmi ,} ] =0. 

By combining the form of H with the so-called Chen-Harker-Kanzow-Smale smooth- 
ing technique we get the following approximation mapping F: Rn X JR2n 
sRn X 2 

ru 
(3) (u{,4 . x I y) u, , . 
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where 
[ O(ui, xi, Yi)1 

(4) D(u, xIY) (ux:= ... . 
L0(Uni xni Yn) 

and 0: ER3 - e is the Chen-Harker-Kanzow-Smale smoothing function [6, 20, 30]: 

(5) q(M, a, b) = a + b- /(a-b)2 + 42. 

For ,t> 0, the following property holds: 

(6) q(M, a, b) = 0 a > 0, b > 0, ab= t2. 

By letting u = 0 in (3) we get 

F(0, x, y) [ H(x,y) 1 

Lemma 1 ([19], Lemma 1.4). For every nonnegative number,u > 0, a triple (a, b, c) 
E 3 satisfies q(M1, a, b) = c if and only if ((a-c/2), (b-c/2)) > 0 and (a-c/2) (b- 
c/2) = M2. 

Throughout this paper we let denote the 12-norm of Rn and its induced 
matrix norm. 

Lemma 2. For any z- (,, a, b) E R3 and z1 = (Ml, a ,b1) E RJ3 with ,u,u1 > 0 we 
have 

(7) q$0"(z) <4 
7- 

1 < 
(a-b)2 +4t2' 

and for any a E [O, 1), 

a2 
(8) qI(z + a(z - z)) - q(z)-aq'(z)(z1 -z) < a p_l IlzI z112. 

Proof. After simple computations, we have 

_4p 

i/(a-b)2+ 
4 

I2 
1--(a) Vq$(z) = I/ab2+4> 

( (a-b)2+ 48t2 

and 

4 7 -(a-b)2 (a-b),u (b-a), 
q5(z) =A/(W _ _+ _3 

( ab)- a)M _A2 I 2 

Therefore, 

"( < (a-b)2 + I4V2)3I(a-b)4+4(a-b)2/t2+4M4 

(A/(a-b)a- + 42) 

4 

- .a-b)2+ u2 Vr(a - b) + 4)2 
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This proves (7). It then follows from (7) that q10"(z)ll < 2pG- . Then for any 
a E [0,1), we have 

lq(z + a(zl - z)) - 0q(z) - a0q(z)(z1 - z) 

I 

la [j ( + aO(zi - Z)) - q' (z)](z- z)dOl 

a21 0j (Zl Iz)Tq51f(z+a0s(zl -z))(zl -z)dsdOl 

< a 2 X0 X2 dsdOlIz 
I _ Z112 

fa f1 2 0 dsd0lIz1-Z112 -a2 1 010(1 - a0s)u + a0s,uI 

< a 2 [0f 2 dsd0lIz 
I 

z112 
a11~( 

(- a0s4s 

< 2 0 2 dsd0lIzI z112 

a2 a 2 -1 1z zl2 
l~A/t IlZI - Z12 1-Ol 

This proves (8), and completes the proof of this lemma. D 

Recently, based on F defined by (3) (the only difference is that instead of us- 
ing (5) the definition 0(q$, a, b) = a + b - (a - b)2 + 4[t was used in [19]) and 
the trajectory and the neighbourhood techniques, Hotta and Yoshise proposed 
a globally convergent noninterior point method for solving the NCP [19]. Their 
method does not require the initial point (x1, y1) E R' x ER to be in the pos- 
itive orthant. This is quite different from (infeasible) interior point methods, 
where a positive initial point is always required (e.g., see [31, 33, 34]). Given 
initial point z and w = F(z) E Rn x Rn x Rn Hotta and Yoshise's neigh- 
borhood is defined in terms of the vector w- and contains the initial point z in 
its interior. Another type of neighborhood has been studied in [1, 4, 9, 35, 36] 
where the neighborhoods are prespecified. Algorithms based on these neighbor- 
hoods require choosing an initial point in the prespecified neighborhood. In many 
cases, this requirement does not impose much restriction. For example, such ini- 
tial points are easily obtained for the Po + Ro problem [1, 4, 9, 35, 36]. Com- 
pared to the existing noninterior point methods or related smoothing methods 
[1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 21, 27, 32, 35, 36], the most outstanding 
feature of the Hotta-Yoshise algorithm is that their algorithm can keep the iteration 
sequence in a bounded neighbourhood without requiring the initial point to start 
from a bounded level set or its variants. This feature is very favourable for those 
functions which cannot guarantee the boundedness of every level set. However, 
unlike other noninterior point methods [1, 4, 9, 12, 13, 27, 32, 35, 36], there is no 
convergence rate provided in [19]. In this paper we will modify the Hotta-Yoshise 
algorithm and discuss its convergence rate. 
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When we were finalizing our paper, we received a new report by Chen and Chen 
[5] that describes a noninterior point algorithm which is related to the Hotta-Yoshise 
algorithm. They provided a local superlinear convergence result. Their result is 
quite different from ours because during the process they update a sequence of 
neighbourhoods associated with the smoothing paths dynamically while we only 
use one neighbourhood by introducing the smoothing parameter u in the set of 
variable parameters. When this paper was under review, two reports by Burke 
and Xu [2, 3] were released. Based on their previous work on Po + Ro linear com- 
plementarity problems (LCPs), Burke and Xu [2, 3] refined their neighborhood, 
which differs markedly from that used in this paper, to allow them to present a 
predictor-corrector noninterior path following algorithm for monotone and non- 
monotone LCPs. 

Our modified version of the Hotta-Yoshise algorithm is specified in Section 2. 
The global and monotone convergence result is proved in Section 3. In Section 4 
we discuss a global linear convergence result. The superlinear convergence result 
with a Q-order 1 + t, t E (0, 1) is established in Section 5. 

2. THE MODIFIED VERSION OF THE HOTTA-YOSHISE ALGORITHM 

Let v, r: ER X R22n - ER be defined as 

Vi(u, X, y) = (Ui, xi, Yi), i = 1, 2, ..., n 

and 

r(u, x, y) = y-f (x), 

where u E R. Then 

F(u, x, y) =|v(u, xI Y) . 
r(u, x, y) / 

Let V(u,x,y) y ( (u, Y) and N :={1,2, ...,n} and denotez:= ( and I r (u, x,y)Xj 

( u 

w:= v(u, x, y) 
r(u, x, y) / 

Let z E Rn X R2n be such that w: F(z) E Rn++ X n X n Such a point 
z can be chosen easily. In fact, Hotta and Yoshise [19] used the following simple 
method to choose z. Let z = (u, x, y) be an arbitrary point of Rn X E2n* Even if 
F(z) f Rn X tn X ERn we may choose a (dv, dr) E JR2n so that 

(xi -(i + dvi)/2, i + dri - (i + dvi)/2) > 0, i E N, 

- +dr = f(x) + (?+dr), 

v+dv <, r+dr > 0. 

By setting 

ui := {[xi-(vi + dvi)/2][ji + dri-(ii + dvi)/2]}1/2 > 0, i E N, 
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we obtain a point z which satisfies F(z) E x e xRn X Rn Then let r be a 
constant satisfying 

O < rT< min{ lw-i I: i = 1, 2,...,3n} 

and define 

C = {W E ER3n: R3n - i (-W/lli j2) ij < T(WTW/IjWII2)}, 

HW= {WEw E : w W lWII }, 

and 

Q=: cnH . 

Then it is easy to see that Q is a compact set and Q C n X Rn X J Rn. Let p: R2 

be defined by 

p(a,) 1 - a(l - )/2, 

and the merit function +b: jR3n ri* e be defined by 

+(Z) = WF(z)/lll11 '4b(z) 112. 
Before describing the modified version of the Hotta-Yoshise algorithm, we will 

list several conditions used in the following discussion and give some lemmas related 

to these conditions. 

Assumption 1. 

(i) The mapping f is monotone, i.e., 

(X1 - x2)T(f(XI) - f(X2)) > 0 

for every xl, x2 E ERn 

(ii) There exists a feasible interior-point (x, y) of the NCP, i.e., 

(x,y)>0 and y=f(x). 

Assumption 2. 

(i) The mapping f is a Po-function, i.e., for every x1IX2 E Rn with xi x 2 

there exists an index i E N such that 

Xi + X$2 and (XI -_X2)(fi(x1) -f (X2)) > 0. 

(ii) There exists a feasible interior-point (x, y) of the NCP, i.e., 

(x,y)>0 and y=f(x). 

(iii) F-1(D) {(u,x,y) E Rn X R2n F(u,x,y) E D} is bounded for every 
compact subset D of Rn X V(Rn X 2n). 

Notice that Assumptions 1 and 2 are Conditions 1.3 and 2.2 in [19], respectively. 

Lemma 3. If Assumption 1 holds so does Assumption 2. 

Proof. The proof of this lemma is similar to that of Lemma 2.3 in [19] despite that 

the definition of 0(u, a, b) used in [19] is equivalent to O(V/-, a, b) here. C 

Lemma 4 ([19], Lemma 2.1). (i) V(Rn+ x R2n) is an open subset of JR2n. 

(ii) If(,r-) E V(iRn X ER2n) then 

(v + Rn) x (- + Rn) C V(n xR2n 
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(iii) Specially, if (0,0) EV(n X R2n), which is equivalent to saying that the 
NCP has a feasible interior-point, then 

Rn X Rn C V(Rn x R2n). 

By noting Lemma 3 and (iii) of Lemma 4, we have the following useful lemma. 

Lemma 5 ([19], Lemma 2.7). If Assumption 2 holds, then 

F1(D) {(u, x, y) E JRn+ X 2n : F(u, x, y) E D} 

is bounded for every bounded subset D of tn X Rn x Rn 

Lemma 6. Suppose that condition (i) of Assumption 2 is satisfied, i.e., f is a 
Po-function. Then 

(i) The Jacobian matrix f'(x) is a P0-matrix at every x E fn. 

(ii) The Jacobian matrix F'(u, x, y) is given by 

I O O \ 

F'(u, x, y) = -4D I-(X-Y)D I+(X-Y)D 
0 -f'(x) I J 

where X = diag{xi(i E N)}, Y = diag{yi(i E N)}, D = diag{di(i E N)}, 
D = diag{di (i E N) }, and 

di = 1/^\(i ) +4u2, d=uidi, i E N 

for every (u, x, y) E Rn X R2n 
(iii) 

0< 1 -(xi -yi)di< 2, 0 < 1+(xi-yi)di< 2, 

and I - (X - Y)D and I + (X - Y)D are positive diagonal matrices for every 
z E X 2n 

(iv) F'(u, x, y) is a 3n x 3n nonsingular matrix for every (u, x, y) E RnxR2n. 

Proof. (i) has been proved in Lemma 5.4 of [22]. By a direct computation, we have 
(ii) and (iii). By noting that f'(x) is a Po-matrix and that (iii) holds, we can deduce 
that the matrix 

(I-(X-Y)D I+(X-Y)D) 
-f'(x) I 

is nonsingular for every z E x nX R2n (see, e.g., Lemma 4.1 of [23]). Thus, by 
(ii), the matrix F'(u, x, y) is nonsingular for every z E n X JR2n. So, (iv) is also 
proved. E 

Now we can describe our modified version of the Hotta-Yoshise algorithm. 

Algorithm 1. Step 0. Choose constants 8, y E (0,1), and t E [0,1). Let z1 := z- 
Oi #= zl), and k 1. 

Step 1. If F(zk) = 0, then stop. Otherwise, let z:= zkk, '1 := Jk, and =k = 

min { y, 1Jt} 1. 
Step 2. Compute /Az by 

(9) F'(z)/\z = -F(z) + &3'(z)w. 

Step 3. Let lk be the smallest nonnegative integer 1 satisfying 

(10) F(z + 8'ZAz) E Q 
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and 

(11) ?~(z + 6'Az) < p(6, 3) 

Here 61 is the Ith power of J. Define Zk+1 := Z + 6lk/z and /k+1 := #(Zk+l). 
Step 4. Replace k by k + 1 and go to Step 1. 

Remark 1. (i) If t = 0, then we have a slightly updated version of the Hotta-Yoshise 
algorithm. In [19] the definition of 0q(,t, a, b) is equivalent to 0q(fii, a, b) here. Our 
modification does not affect the global convergence property of the Hotta-Yoshise 
algorithm but allows us to prove a global linear result. The reason is that the 
variables ,u, a, b in q($u, a, b) have the same growth rate and such defined 0 is locally 
Lipshitz continuous in 3. The latter property allows us to prove that Assumption 
3, which is essential for the global linear convergence of our algorithm, can be 
satisfied under a regularity condition (see Section 4). The same conclusion does 
not go to 0q(V/p, a, b). By choosing t E (0, 1), we will prove a superlinear convergent 
result with Q-order 1 + t in Section 5. 

(ii) In [19], the vector F(z + 8'Az) in Step 3 is required to stay in the interior of 
Q. Here we only require that it stays in Q. 

Proposition 1. If f is a Po-function, then Algorithm 1 is well defined. 

Proof. The proof of this lemma is largely based on that of Lemma 6.2 of [19]. 
To make the material provided here complete and explicit, we give the proof. It 
is obvious that we only need to verify that Steps 2 and 3 of Algorithm 1 are well 
defined. By Lemma 6, for z = zk ER X R2n the matrix F'(u, x, y) is nonsingular. 
So, Step 2 is well defined. Next, we prove that Step 3 is also well defined. First, 
from (ii) of Lemma 6 and (9) of Algorithm 1, for z = zk E Rn X R2n and ,B Ok 
we have 

(12) A\u = -u + 30B(z)u? 

Then for z = zk E xn X J2n and any a E [0,1], it follows from (12) that 

u + aLu = (1 - a)u + ao/3B(z)u E R' 

and so, 

Z + c\ZERn X R2n 

For z - zk and a E [0,1], define 

(13) 9g(a) = F(z + a/\z) - F(z) - aF'(z)z\z. 

Since F is continuously differentiable at z = zk 

(14) g (a) = o(ae). 

Combining (9) with (13), for z = zk, /3 O3k, and any a E [0,1], we have 

(15) F(z + aAZ\z) = (1 - )F(z) + a[/30b(z)wz + g(a)/a] 

and 

b(Z +? AZ) (1- a)+(z) + a[c3(z) + -Tg(a)/(ajj 112)] 

(16) <( - ( + X , 3n l(/ ? ,I9Go)II] 
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Define 

(17) ctW := sup{&a e (0, 1]: IIg(a)II/a < (1 - 4)'(z)IItvjjI/2 Va E (0, a']} 

and 

(18) cl := sup{& e (0,1]: (2 + r/llzil)lIg(a)llla/ < r,3b(z) VE E (O, a']}. 

Then, by using (14), the constants avp and ca are positive and well defined by (17) 
and (18), respectively. It then follows from (16), (17), (15), and (18) that for all 
ct e (O, ct], 

O(z + aLz) < {(1 - a) + a[f3 + (1 -f3)/2]}1(z) 

= [1 - ca(l - 3)/2]4'(z) 

(19) = (a O) (z), 

and for all a E (O,Qa], 

(20) 

+w P)(z)w + g(a)/a] _ V[(z)w + g(a)/a] 
P/V4(z)ib + g(a)/a] - 

1112 W Ir IItVII2 

g(a)/Q- 
w Ig(ay)/a _ I (z) + w g(a)/a 

? lig(a)o1I/ca + lig(a)II/a - 'O/4(Z) + T g(a)11/ 

* (2 + r/1wvIj)IIg(a)II/Q - r/3b(z) 

< 0. 

Hence 

fl0(z)fvb + g(a)/a E C. 

Then from F(z) E C, the definition of C, and (15) that for all a e (0,a,], we have 

(21) F(z + aLz) = (1 - a)F(z) + a[QV(z)t- + g(a)/a] E C. 

Also, since (19) holds for all ca e (0, ca], it follows from the fact F(z) e HW that 
for these a's we have 

(22) w7 F(z + a&Az) = = (z + ctz)IIW|I2 ? P(Z)IkbII2 = TF(z) < IkbII2. 

Then for all ca e (0, min{ap,a,i }], we have from (21), (22), and (19) that 

F(z + aLz) e Q and O(z + aLz) < p(a,/3)4'(z). 

This shows that in Step 3 Ik is well defined and finite, i.e., 61k > 0 and Step 3 is 
well defined. 
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3. GLOBAL AND MONOTONE CONVERGENCE 

Theorem 1. Suppose that Assumption 2 holds. Let {(zk, fIk) S I x [0, 1]} be a 
sequence generated by Algorithm 1. Then 

(i) The sequence z -= (uk, xk ,y k)} is bounded. 
(ii) The sequence {'k} is monotonically decreasing and converges to 0 as k -* 00. 

(iii) liMk,0 uk = 0 and every accumulation point of {(xk, yk)} is a solution of 
the NCP. 

Proof. (i) Since Q is compact and Q c 3 x + ?1 X 3+, from Lemma 5 we know 
that F-1(Q) is bounded. It then follows from F(zk) E Q that the sequence {zk} is 
bounded. 

(ii) From Algorithm 1 and Proposition 1 we can see that 'Ok > /'k+1 

(k = 1, 2, Hence the sequence { k4 is monotonically decreasing. Since 'Ok > 0 
(k = 1,2, .)there exists a > such that Vk * as k -+oo. If = 0, then we 
obtain the desired result. Suppose that Vb > 0. Since, by (i), the sequence {zk} is 
bounded, by taking a subsequence if necessary, we may assume that {zk} converges 
to some point z. It is easy to see that - 

- wTF(i)/IllvI12 = 0(/) and F(i) E Q. 
Thus, from '(i) > 0 and F(i) E C, we can see that F(z) sE 3Rn++ X R? X 

Hence i E Rn x 32n because iii = Fi(z), i E N. Since for all k, 5k > b > 0, 
there exists a positive number 3 such that 3k -* /3. Let z E Rn+ x 2n and 
/3(z) min{y, )(z)t}. Then from Lemma 6, F'(z) is nonsingular. Let Az be the 
unique solution of the following linear system of the equations 

F'(z)Az =-F(z) +, 3(z)4(z)fw. 

For a E [0, 1] 'define 

gz(a) = F(z + aAz) - F(z) - aF'(z)Az. 

Then from the Mean Value Theorem [24], 
Al 

gz(a) = j[F'(z + 6aAz) - F'(z)]AzdG. 

From (ii) of Lemma 6 we can easily see that F'(.) exists and is continuous in 
a neighbourhood of i, and so, it is uniformly continuous in this neighbourhood. 
Furthermore, since Az -A as z i, for any given ? > 0 there exists a neigh- 
bourhood N(z) of i such that for all z E N(i), 11jg(a)J/ac < E. Hence, since 

[1 - 3(z)]0(z)jjiv-jj/2 -* [1 - 3(i)]/(i)jjfv-jj/2 > 0 

and 

/3(z)+ (z)/(2 +r/II) -)/(2 + -r/jjiDjj) > 0 

as z -Z i, there exist a positive number &> 0 and a neighbourhood N(i) of i such 
that for all a E (0 &], 

jjgz(a)jj/a < [1 - 0(z)],0(z)jjivjj/2 
and 

(2 + r/jjfjj)jjgz(a)jj/at < Tr3(z)4(z). 

Then by examining the proof of Proposition 1, we can see that for any ae E (0 &] 
and all z e N(i) such that F(z) E Q, we have 

F(z + aAz) E Q and O(z + aAz) ? p(a, /3(z))V/(z)- 
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Therefore, for a nonnegative integer 1 such that 31 E (0, a], we have 

F Zk + 3z1Zk) E Q and 4(zk + 61Azk) ? p(61,/3k)#O(Zk) 

for all sufficiently large k. Then, for every sufficiently large k, we see that lk < 1 

and hence 61k > 61. Then 

?/k+1 < p(631k, f) kk < P(613)'?/)k < P(61 01)'?k 

for all sufficiently large k. This contradicts the fact that the sequence {V)k} con- 
verges to b > O. 

(iii) From the design of Algorithm 1, F(zk) E C, i.e., 

|F(zk) -(Z k)W|| < rO(zk). 

By assertion (ii) above, we have limkO,0 ?k(zk) = 0. Then by taking limits on both 
sides of the above inequality, we obtain limk. F(zk) = 0. Hence, limk ,0 Uk = 0. 

Suppose that (x, y) is an arbitrary accumulation point of {(xk, yk)}. Then (0, x, y) E 
RJ3, is an accumulation point Of {zk}. By the continuity of F, we have F(O, x,y) = 
0, i.e, 

H(x, y) = 0. 

Thus (x, y) is a solution of the NCP. O 

4. A GLOBAL LINEAR CONVERGENCE RESULT 

In this section we will provide a global linear convergence result. The most 
distinctive feature of our result is that we do not require the initial point to stay 
in a specified bounded level set or its variants, which may not be easy to know. 
There are some global linear convergence results for noninterior point algorithms or 
smoothing methods, as in [1, 4, 9, 35, 36], but they need this requirement. We avoid 
this requirement by using a neighbourhood different from those of [1, 4, 9, 35, 36]. 
This requirement was also avoided in three recent reports [4, 2, 3] by refining a 
neighborhood or its variants as studied in [1, 4, 9, 35, 36]. 

Assumption 3. There exists a constant co > 0 such that for all k > 1, 

IIF/(zk)_l1 < Co. 

Let (x*, y*) be a solution of the NCP, and define 

I(x*,y*) = {i E N: xi >0, y* =? 

J(x*, y*) = {i E N: x* =) y*-?} 

and 

K(x*,y*) = {i EN: x= 0, Y > 0}. 

We say that the R-regularity condition holds at (x*, y*) if MI, is nonsingular and 
the matrix 

MJJ - MJIMII1Mij 
is a P-matrix, where M := f'(x*) and I, J, and K are abbreviations of I(x*,y*), 
J(x*,y*), and K(x*,y*), respectively [29]. 

Proposition 2. Suppose that Assumption 2 is satisfied and the sequence {zk} is 
generated by Algorithm 1. If the R-regularity condition holds at all (x*,y*) E R2n 

with (0, x*, y*) being an accumulation point of {zk}, then Assumption 3 holds. 
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Proof. First, according to Theorem 1, the sequence {zk} generated by Algorithm 
1 is bounded and each accumulation point (x*, y*) of {(xk, yk)} is a solution of 
the NCP. Then, that the R-regularity condition holds at (x*, y*) is meaningful. 
It is easy to verify that F(.) is locally Lipschitz continuous. Let &3F(z) be the 
generalized Jacobian of F at z, as defined in [14]. Then, by Lemma 6, after a 
simple computation, we have 

F(O, x*, y*) C |-4D* V* W* ) 

0 -f (x*) IJ) 

where D* = diag{d* (i E N) }, d* E [-1/2, 1/2], and V*, W* E gR"X' satisfying 

( V* W* 

Since the R-regularity condition holds at (x*, y*), all the matrices T E &H(x*, y*) 
are nonsingular (e.g., see Proposition 4 of [4]). This further ensures that all the 
matrices S E 9F(O,x*,y*) are nonsingular. Then by Proposition 2.5 of [26] we 
know that (0, x*, y*) is an isolated solution of F(z) = 0, i.e., (x*, y*) is an isolated 
solution of the NCP. This means that the sequence {zk} has only finitely many 
accumulation points; otherwise, there must exist an accumulation point of {zk }, 
which is not an isolated solution of F(z) = 0. Then by Proposition 3.1 of [28] and 
the fact that 9F(zk) = {F/(Zk)} since F(.) is continuously differentiable at Zk for 
any k > 1, we can find a constant co > 0 such that Assumption 3 holds. This 
completes the proof. O 

Theorem 2. Suppose that Assumptions 2 and 3 are satisfied and in Algorithm 1 
the constant t is set to be 0, i.e., Ak y for all k > 1. Then there exists a constant 
c E (0,1) such that for all k > 1, 

(23) +~~~~~(Zk+l) < CO(Zk). 

Moreover, if y satisfies 

(24) -Yui/ (ui - r) < II i E N, 

then there exists another constant c E (0,1) such that for all k > 1, 

(25) U k+1 < &U k, i (E N. 

Proof. First, from F(zk) E C and Fi(Zk) = u0,i E N, we get 

(26) ||F(zk)|| < (r + 1i-H>)b(zk) 

and 

-U k_b(Zk) ?I < -r(zk), i E N. 

Hence, from the definition of r, 

(27) 0 < (u - i-)fb(zk) < Ui < (Ui + _r)0(Zk), i N 
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Then, by (9), Assumption 3, (26), and the fact that 1k = y, we get 

ll\zkll < coll - F(zk) ?+ 13kP(z)wll 

(28) < co[(r + IIWII)(z k) + _yIbILlk(zk)] 

= CiO(Z k), 

where cl co[-r + (1 + -y)I1II]. Let 

g k(a) F(Zk + aAzk) - F(zk) - aUF/(Zk)LAZk 

and 

o7k(a) = j [f/(Xk + aoi\xk) - f/(Xk)]AXkdO. 

By using Lemma 2 and the structure of F, for any a E [0,1) and i E N we have 

Igk+i (Ol) I 

= IFn+i(Zk ? Lzk) -F+(zk) - aFn+i(zk)Azkl 

- k5(ui + OAui, Xi + aUAxi, 
yi + acyi) - xi, yO ) 

71~~~~~-8 (Uik Xik yik )1 (t1 k 71 , 0yk)| 

(29) < -! (Uik) l (AUik, AXik Asyk) 11 2 

From Theorem 1 we know that {zk} is bounded and {?P(zk)} - 0 as k - oo, and 
so from (28) { 1Azk I} also converges to 0. Since f'(.) is continuous, it is uniformly 
continuous on every compact set. Let 

(30) m := min { ( ?( r } 
4ci '2(2 -r/IIv-ll)ci 

Then there exists a positive number & E (0,1] such that for any a E [0, &], any 
0 E [0,1], and any k? 1, 

||f/(xk + aoUAxk) - f/ (Xk) < E. 

Hence for any a E [O, &] and any k > 1, 

(31) II0k(a)II < aEII AXkII < CEIIZAZk II. 
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By noting that gi (a) = 0 for all i E N we have 

I 1/2 

Ig1(a)ll= [Z(Igk(a)12 + g19+i(a)12 + lgl +i(a)12) 
Li=l 

I 1/2 

= LL(Ini()|+ 19k+ a 

~~ n ~ 1/2 F~ 1 1/2 
? [Z gk .(ay) 2J ? LE g9k+(c 2J 

n 

(32) < E|g1+i(a)j2 + lglik( a)12I 
i=1 

Let c2 :=(min Ui - Tr)-cl2. Then, from (32), (29), (31), (27), and (28), for any 

o e E[O, o&) (note that 1l < 1) we have 

||gk(oa)|| < 1 -(minuik) lVAzkIl2 
? 

aejlazkI 

- 1 L = iEN 

<1- (minuA -r)1 /(zk)1c2t(zk)2 ? o!ecl1I(zk) 

(33) = cg+Ce)+(z ). 

Define o t as 

(34) oe := min m t (mi i- ' 4(2 +k1/1Zk2)c2 ' 2E} 
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Then from (33) for all a E (0, a-] we have 

(35) 
O (Zk + aAZk) - P(a, k) P(Zk) 

= p(Zk + az Zk) - p(ay )O(Zk) 

-wF(zk + 
aAzk)/I -Ill2 _ [1 - (- )/2]p(zk) 

< T [F(zk) ? oF(zk)>zk]/|lI|WII2 + llgk(a)ll/ll -[1- c(1Z-y)/2]4(zk) 

_ ?TF(zk)/II II2 + CeiVT[_F(Zk) + 7y (Zk) 
- - 

11 2 

-[1 - a(l - y)/2],O(zk) + IIgk(a)11/1IW|I 

p(Zk) ao(Zk) + a-yy(Zk) - [1 - a(1 - y)/2]?(zk) + llgk(a)lW/|llgl 

[ (1-7)/2]+(k) + llgk (a) 11/11 -1 

< [-(1- y)/2](zk) + a ( C2 + c 

and 

|[y7/(ZkO +W gk(a)/a] - WT [ +(zk>)W +gk(o)/a] 

7wT[y+Ty(z )W + k (g)/k] T 
~~~llU 112 

= |Zk() T -)/ i / p( zk) + gk C 2 ) 

< jgk (T) k/Ol + gk ( / T+(Zk) + T gk ()) 

iiwii2~~~~~~~~~~I~I 

? (2 + T/|Jw||) gk()/Zk-g (a)|| /(Zk) 

(36) < (2 + T/alWa) g(aC2 + C16) )(zk) - Tfgk(Zk). 
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By considering (30), (34), (35), and (36) we have for all a E (0, a] that 

(37) 
?p(zk + aAzk) - p(a, k)V)(zk) 

< [-a(l - y)/2]p(zk) + a(2ac2 + cie)p(zk)/llwll 

[-a(1 - y)/4 + acclE/ll-ll]V/(z k) + [-a(1 - y)/4 + 2a 2c2/ll|-ll]p(zk) 

< [-a(1 - y)/4 + a(1 - y)/4] (zk) + [-a(1 - y)/4 + 2a(1 - y)/8] p(zk) 

=0 

and 

[-yt/(zk) 
- 

+ gk /( (a)/a] 

T [-y(Zk) V + gk (cx)/Cx] 

I[C112 

< (2+ T/llwll)(2ac2 + ClE)zp(Z k) - TyI)(Zk) 

= [2(2 + T/||jiwl)aC2 - Ty/2] O(Zk) + [(2 + T/llwll)ciE - Ty/2]?I)(Zk) 

(38) < 0+0. 

Hence from the inequality (38) for all a E (0, ad, 

b(zk>w + gk((a)/a E C. 

Then from F(zk) E C, the definition of C, and the fact F(zk + CaLzk) = 

(1 - a)F(zk) + a/[y,(zk)w + gk(a)/a] for all a E (0, a], we have 

(39) F(Zk + aAZk) E C. 

Also, from (37), for all a E (0,a], 

(40) j-TF (Zk + cZk) = ?(Zk + cZk)lljl12 < ,(zk)jllll2 = -TF(Zk) < 11W112. 

Then, from (39), (40), and (37), for all a E (0, a] we have 

F(zk + caAz) E Q and #(zk + aAzk) < p(a, Y)>z(zk). 

Let 1 be the smallest nonnegative number such that (1 < a. Then ak > 61 Let 
c := p(61,y), then 

?(Zkl?) ? p(k,y)?(Zk) < p(61, _Y)(z'k) = Cp(Zk). 

This proves (23). 
Next, we prove (25) under the assumptions. FRom (9), we have 

Auk = _uk + _Yb(Zk)-. 

Then, 

u k+l _(1 -ak)UW + akTyV(Zk)ui, i E N, 
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which, together with (27), gives 

(41) 

U+ < [1 - ak + ak AUi/(Ui -)]Ui = {1- [1-YUi/(Ui-T)]ak}Ui, i E N. 

Let 

c 1{ - -ymax[ui/(Ui - T)]}61. 
iEN 

Then, since -y satisfies (24) and 6' e (0,1], c E (0,1). Hence, from (41) and the fact 
ak > 61, we get 

uk+1 < - k iN 

which completes the proof. D 

Remark 2. (i) The results in Theorem 2 do not hold for the original version of the 
Hotta-Yoshise algorithm, where the definition of 0(p, a, b) is 0(qu, a, b) = a + b - 

+/(a-b)2 
(ii) In [4, 9, 35], the authors provide a global linear convergence theorem similar 

to Theorem 2 under the additional assumption that f'(.) is Lipschitz continuous. 
Here we do not make such an assumption. 

5. SUPERLINEAR CONVERGENCE 

In this section we will discuss superlinear convergence of the algorithm by setting 
t E (0,1) in Algorithm 1. Suppose z* = (0, x*, y*) is an accumulation point of the 
sequence {zk} generated by the algorithm. Then under the assumptions made in 
Theorem 1, z* is a solution of F(z) = 0 and (x*,y*) is a solution of the NCP. We 
make the following assumptions at z*. 

Assumption 4. F'(z*) exists and is nonsingular. 

Assumption 5. There exist positive constants L and E such that for all z, z' E 

B(z*,E) := {z E R3n |Z-Zz*? < E}, 

(42) IIF(z') - F(z) - F'(z)(z' - z)II < Lliz' - z112. 

Proposition 3. Suppose that z* satisfies 

x* + f(x*) > 0 

and f'(.) is Lipschitz continuous around x*. If f'(x*)ii is nonsingular, then As- 
sumptions 4 and 5 are satisfied, where 

I :{i: x* > 0}. 

Proof. First, it is easy to verify that F'(z*) exists under the assumption that x* + 
f (x*) > 0. Moreover, 

I O 

F'(z*)= O V* W 
0 -f'(x*) I, 

where V*, W* E Rn,n satisfying 

Ht(x*y*)=( V* W*) HI(x*,y*) = ( f(x*) IV 

Then F'(z*) is nonsingular because H'(x*, y*) is nonsingular under the assumptions 
that x* + f (x*) > 0 and f'(x*)ii is nonsingular. This verifies Assumption 4. 
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To verify Assumption 5 we only need to prove that 4D(.) is continuously differ- 
entiable in a neighbourhood of (0, x*, y*) and its derivative is Lipschitz continuous 
because Fi(z) = ui, i E N, all Fi (.), i E {2n + 1, 2n + 2, ..., 3n} are continuously 
differentiable on 3n, and their derivatives are Lipschitz continuous under the as- 
sumptions. However, since x* + f (x*) > 0, it is easy to see that 41(.) is twice 
continuously differentiable in a neighbourhood of z*. Then Assumption 5 is veri- 
fied. C] 

Theorem 3. Suppose that Assumption 2 is satisfied and z* is an accumulation 
point of {Zk} If t is set to be in (0, 1) and Assumptions 4 and 5 are satisfied at z*, 
then the whole sequence {Zk} converges to z* with Q-order 1 + t, i.e., 

(43) Ilzkll 
_ 

Z*11= 0(lzk - z*1?1+t). 

Moreover, 

(44) p(Zk+l) = 0(?(zk)l+t) 

and 

(45) uI = O((u )1t), i E N. 

Proof. By Theorem 1, z* is a solution of F(z) = 0 and (x*, y*) is a solution of the 
NCP. Also, from Theorem 1, we have that 

(46) F(zk) -* 0 and ?(Zk) 0 

as k -* oo. If zk is very near z*, then, from (9), (46), and Assumptions 4 and 5, 
Azk is very near zero. Thus, from Assumption 5, there exist positive numbers L 
and E such that for all zk E B(z*,E), 

(47) IIF(zk + Azk) - F(Zk) - F/(zk)AzkII < L||AZk| 2. 

Suppose that E is small enough such that for any z E B(z*, E), F'(z) exists and is 
invertible. Let 

LI:= max { llF'(z)-Yll} and L2 := L(2II'wl +Tr). 
zEB(z* ,e) 

Then for all zk E B(z*,) 

(48) IIAzk | < Lill - F(zk) + /3kP(z )wl < Li[flF(zk) | + /kHWWIP(z )]. 

Since F(zk) E C, we have 

|F(z,k) 
_ 

?(zk)W|| < TI(Zk). 

This implies that 

(49) ||IF(zk)II < ( |w || + T)4,(Zk). 

By combining (48) and (49) and using the fact Ak < 1, for all zk E B(z*, E) we have 

(50) <IAzkII ? LI(IIw||1 + T + O/kllwlI)P(z ) < L2p(zk). 
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Then, from (47), (9), and (50), for all zk E B(z*,E) we have 

IP(Zk + Azk) -IkO(Zk) I 

_ IVTF(zk + AZk)/IlfI112 - Ok3O (Zk)I 

< iVT [F(Zk) + F'(Zk)AZk]/l|VW112 -Ik(Zk)1 + LI1AZkL112/11jW1J 

= IV[Tk (Zk)V]/1fV-jj2 - (Zk)I + LIIAzkII2/IIWII 

- LIIAZkII2/iV-II 

< L(L2 )2,0(Zk)2/jjjV-jj 

Then, by letting L3 := L(L2)2/1lV-11, for all Zk E B(z*,e) we have 

(51) lP(Zk + Azk) - AIk (Zk)I < L30 (Zk)2. 

According to our algorithm and Theorem 1, when k is sufficiently large, Ak = 

b(xk)t. So, when Zk is sufficiently close to z*, 

k)<1 /A (52) Ak + L3V(zk) < + - = P(I, k) 22 

Then from (51) and (52), when zk is sufficiently close to z*, 

(53) k(zk ? A)) < /k(k) + L3(zk)2 < p(l, f3k)P(Zk). 

On the other hand, since /(zk + AZk) = WVTF(Zk + AZk)/IliII2, from (53) and the 
fact F(zk) E Hv, we get 

iV- TF(Zk + AZk) = liWJ2Vb(Zk + AZk) 

< IlIII2(l + pk),b(Zk) 

= (1 + 

<(1 + /3k)JVTFZ2 

< II?112. 

So, 

(54) F(zk + Azk) E Hwv 
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Meanwhile, from (51), (9), (47), and (50), for all zk sufficiently close to z* we have 

IIF(zk + AZk)_- [TF(Zk + AZk)/jjWjj2]pDI 

- IIF(zk + AZk) _ /(Zk + AZk) -11 

? IIF(z' + AZk)-3kP(zk)wII + L3II|W IbI4(zk)2 

-IF(zk + AZk) - F(Zk) - F/(zk)AzkII ? L3II I4(zk)2 

? L|Az|2 + L311l?p(zk)2 

? L(L2)2 (z')2 + L311l?p(zk)2. 

By letting L4 := L(L2)2 + L311w2II, for all zk sufficiently close to z* we have 

(55) IIF(zk + Azk)- [WTF(Zk + Azk)/F W|I2 W|I < L40 (Z )2. 

Suppose that zk is sufficiently close to z* such that 

(56) Ok - L3?(Zk) = Vp(Zk)t - L3?p(Zk) > -L4p(Z k). 

Then, from (55), (56), and (51), for all zk sufficiently close to z* we have 

IIF(zk + Azk)_- [TF(Zk + AZk)/jj-jj2]pDI 

< L40(Zk) 

< 2[k - L3?p(Zk)]?p(Z 

(57) < ?P(zk + ?Azk). 

Thus, from (53), (54), and (57) we have in fact. proved that for all Zk sufficiently 
close to z*, 

(58) zk+1 = zk + Azk 

i.e., Ik = 0. Again, from (9), for all zk sufficiently close to z*, 

IlZk + Azk -Z*1 = IlZk + F/(Zk)-[_F(Zk) + k(Zk)w] -_ Z*| 

= ?[|IF(zk) - F(z*) - Fl(zk)(zk - z*)II + p(zk)l?t||W||] 

(59) = O(IZIk - z*112) + O(IIF(zk)l? +t) 

= 0(IZIk - z*112) + 0(IIzk _ z*111+t) 

= O(11 Zk _ Z* 11 1t ) 

Then, by combining (59) with (58), we know that when k is sufficiently large we 
have 

zk+1 = zk +,Azk 
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and 

izk?1 - z*II = 0(11zk _- z*I1t). 
Hence the whole sequence {Zk} converges to z* with Q-order 1 + t. Then (43) is 
proved. Since the whole sequence {Zk} converges to z*, from (51) and 3k = ?(Zk)t 

for all k sufficiently large we have 

p(zk+1) = O(?(Zk)l+t) 

This proves (44). Furthermore, from (9), when zk+l = Zk + Azk, 

uk+ uk Auk uk + [_Uk +k?(Zk)U] =3kP(Z)U- 

Then, because when k is sufficiently large, zk+l - zk + Azk, for all k sufficiently 
large we have 

(60) U. =Ak(z )U. 

It follows from F(zk) E C and Fi(Zk) =u,i E N that 
ju - (Zk) -, I < T? (Zk). 

But, since 0 < r < minQui}, we have p(zk) = O(uk),i E N. Hence from (60) we 
iEN 

have 

Uk+- = O((uk)1+t), i E N. 

This is (45). So, we complete the proof of this theorem. 2 

For different choices of a parameter t E [0,1), the algorithm introduced in this 
paper is shown to be either globally linearly convergent (when t = 0) or globally and 
locally superlinearly convergent (when t E (0,1)). It was pointed out by the referee 
that the predictor-corrector strategy may be useful to get an algorithm with both 
global linear convergence and local superlinear convergence properties. By using 
a different neighborhood, Burke and Xu [2, 3] provided such results for monotone 
and nonmonotone linear complementarity problems. 
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